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J .  Phys.: Condens. Matter l(1989) 9637-9651. Printed in the UK 

Monte Carlo calculation of inter-valence-band radiation 
absorption in germanium: I. General principles and 
low-intensity absorption 

A Dargys 
Institute of Semiconductor Physics, Academy of Sciences of the Lithuanian SSR, 
232600 Vilnius, Lithuania, USSR 

Received 30 November 1988 

Abstract. This is the first of two papers that present general principles of Monte Carlo (MC) 
simulation of linear and non-linear infrared-radiation absorption due to hole inter-valence 
transitions in p-type semiconductors. In the MC model the heavy- and light-mass sub-bands 
are treated as a collection of two-level systems, wherein the hole due to excitations by lattice 
vibrations hops between different members of the system. The close analogy with the two- 
level system allows one to incorporate into the MC program such purely quantum-mechanical 
effects as Rabi oscillations and dephasing. In this paper the general principles are presented 
and used to calculate absorption cross section at weak laser intensities. High-intensity 
absorption will be treated in the second paper. 

1. Introduction 

The Monte Carlo (MC) method as applied to charge carrier transport in semiconductors 
(Jacoboni and Reggiani 1983) consists of numerical simulation of particle motion and 
scattering by lattice imperfections in constant or time-varying fields. One of the assump- 
tions implicit in the MC method is that between collisions the particle free flight 
proceeds in a single energy valley or valence sub-band. The transitions to other sub- 
bands (valleys) are included through collisions with the phonons, impurity atoms, etc. 
In strong electric fields, however, the hole or electron, before experiencing the next 
collision, may appear in another sub-band by a tunnelling effect. The tunnelling prob- 
ability is large when the energy sub-bands are close enough, such as for example in 
covalent p-type semiconductors in the vicinity of the degeneracy point, where heavy- 
(h) and light- (1) mass sub-bands meet. In a laser field the inter-valence tunnelling? of 
the hole is intense if the energy separation between sub-bands satisfies the resonance 
conditions. 

Our main interest lies in simulating hole dynamics in high-intensity laser fields, 
when valence-band wavefunction mixing by the laser electric field causes oscillations of 
t The terms ‘inter-valence tunnelling’ and ‘inter-valence transition’ can be used interchangeably, although 
the former implies that in finding the transition probability the electric field, constant or  alternating, has been 
considered to be responsible for inter-band transitions (Aleshkin and Romanov 1984, Dargys 1987). We 
assume that the forbidden energy gap is wide enough so that Zener (1934) tunnelling between valence and 
conduction bands is absent, and only tunnelling within conduction or valence sub-bands occurs. Electron 
tunnelling between conduction bands was invoked to explain the dependence of impact ionisation rate upon 
electric field orientation (Pearsall eta1 1977). Modulation of the hole velocity between collisions in a constant 
electric field due to hole tunnelling between valence sub-bands was considered by Dargys (1989a). 
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population of h and 1 sub-bands in the resonance region (Dargys 1987). Oscillations of 
energy level population in the laser field are well known in atomic physics, where they 
are usually referred to as Rabi oscillations (Allen and Eberly 1975). If Rabi oscillations 
of various atoms in the ensemble have different frequencies or initial phases, then, in 
addition, dephasing effects will come into play. Rabi oscillations of the hole population 
in the resonance region and large hole scattering rate in the 1 sub-band lead to hole 
burning in the hole distribution function and concurrent bleaching of p-type semi- 
conductors, first observed experimentally by Gibson (1972). References on this subject 
can be found in a review article by James and Smith (1982). 

The standard MC method (Jacoboni and Reggiani 1983) is a classical statistical 
method, because the complicated particle trajectory in momentum or real space is the 
result of the simulation of classical particle motion. In this paper the standard classical 
MC procedure is modified to include quantum-mechanical effects, namely Rabi oscil- 
lations and dephasing, and is then applied to find the distribution function and inter- 
valence absorption cross section. To this end, the valence band is looked upon as an 
ensemble of two-level micro-ensembles, which are immersed in the homogeneous laser 
electric field. Within a single micro-ensemble the hole is treated quantum-mechanically 
with the help of modified Bloch equations, which, apart from Rabi oscillations and 
dephasing, also take into account particle feeding to and decay from the micro-ensemble 
(Breiland er a1 1976). The transitions of the hole between different micro-ensembles are 
treated classically as in the standard MC method. 

In this paper, the single-particle MC model is discussed and applied to calculation of 
the infrared (IR) absorption at low radiation intensities. The calculation of absorption 
in p-Ge at high CO2 and NH, laser intensities, and comparison with the available 
experimental results, is presented in the second paper (Dargys 1989b). 

2. Hole tunnelling dynamics in an intense laser field 

In the following the spin-orbit split-off valence sub-band is neglected completely, and 
the remaining doubly degenerate heavy- and light-mass valence sub-bands are assumed 
to have spherical constant energy surfaces. Thus, the results obtained in this paper will 
be valid for laser energies ho smaller than the spin-orbit separation. 

The laser field couples h and 1 sub-band wavefunctions. The invariance of the valence 
band effective-mass Hamiltonian to reflections with respect to the plane made up of hole 
wavevector and electric field allows one to construct linear wavefunction combinations, 
which remain decoupled even in the presence of the laser field (Aleshkin and Romanov 
1984). These combinations, named positive and negative states, describe the depen- 
dence of the valence sub-band occupation on time, laser electric field amplitude and 
frequency, and initial wavevector. Specifically, the probability to find the hole in the 1 
sub-band, p l ,  when at the moment r = 0 the hole with certainty has been in the h sub- 
band and possessed wavevector ko, is (Dargys 1987) 

Q 2  sin2[iz(Q2 + A2)1/2] 
Q2  + A 2  PI = 

Here t = ot is a dimensionless time, o is the cyclic laser frequency, Q is normalised to 
w one-photon cyclic Rabi frequency 

which depends on the angle 8 (see figure 1) between initial hole wavevector k, and 
Q = ( V / 3 / 2 > 0 f l s i n  8 (2) 
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Figure 1. Orientation of laser electric field F and 
initial hole wavevector ko with respect to coor- 
dinate axis. 

harmonically varying electric field F = F ,  cos ut, state index n = k 1 and dimensionless 
tunnelling constant 

Here hw, is the resonance energy, which is equal to the energy difference between light- 
and heavy-mass band energies at wavevector ko: 

4 y  = mi' - m;' and e ,  m,, h are elementary charge, free-electron mass and Planck's 
constant, respectively. 

For us it is important that at not too large field amplitudes, more exactly when 
0 << 1, the Rabi frequencies for positive n = +1 and negative n = -1 states coincide. 
This property greatly simplifies the MC program because the doubly degenerate valence 
sub-bands can be viewed as if they are non-degenerate and, therefore, treated as a 
collection of simple two-level systems. However, it should be remembered that, at high 
laser intensities, when 0 - 1, tunnelling between two degenerate valence sub-bands 
occurs with two different Rabi frequencies. For two-photon as well as for higher-order 
photon absorption, the Rabi frequencies, even at low intensities, are different for 
positive and negative states (Dargys 1987). In summary, the tunnelling probability (1) 
for spherical valence sub-bands depends on the relative detuning A = (U, - w ) / w  and 
normalised Rabi frequency Q in exactly the same manner as for a simple two-level 
system immersed in a harmonically varying electric field (Allen and Eberly 1975). This 
similarity allows us to consider the hole having initial wavevector k,  as an atomic two- 
level system. This is not evident at first sight, because in the field F ,  cos wt the hole 
wavevector is not constant; in fact, the wavevector component parallel to the electric 
field changes according to the law 

while the perpendicular one is time-independent, k,(t) = k,,.  At high intensities the 
oscillatory part of (4) can be large. Nevertheless, as the above arguments show, the hole 
with initial wavevector k,  = (kZo,  kLo)  under the action of the laser field behaves as a 
simple two-level system characterised by level separation hw, = &,(k0) - ~ ~ ( k ~ ) .  

hw,  = & , ( k 0 )  - Eh(k0) = h22yk;/mo 

k ,  ( t )  = kZ0 + (eFo /no) sin wt (4) 

3. Model for Monte Carlo simulation 

3.1. Basic model 

Figure 2 illustrates the basic model for calculation of inter-valence absorption of IR 
radiation due to transitions of the hole between heavy- and light-mass sub-bands. It 
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Figure2. Two-level ensemble as a model for simulation of inter-valence absorption in p-type 
semiconductors. Owing to collisions with the phonons the hole hops among two-level systems 
characterised by different initial wavevectors k(, , . . , , k p  + ' I .  If separation between levels is 
close to the laser energy (vertical wavy lines) the hole undergoes Rabi oscillations, otherwise 
the hole before experiencing the next collision remains in pure upper or lower level charac- 
terised by energy e h ( k { )  and ~ , ( k { ) .  

consists of an ensemble of two-level systems, with the upper and lower level representing 
h and 1 sub-bands, respectively. 

The different systems are labelled by hole wavevector components parallel, kzO = 
ko cos 8, and perpendicular, k,,  = ko sin 8, to the electric field, where 8 is the angle 
between ko and F O .  An individual two-level system, in fact, is a micro-ensemble that 
consists of those holes which have equal k L o  = (k:, + k$)l/* and kZo. The hole can be 
scattered from one two-level system to another by lattice vibrations. For large detunings 
A, when the tunnelling probability is very small, the hole in the intervals between 
collisions stays on a single upper or lower level; its residence time on the level is equal 
to the free flight time in the respective sub-band. If the resonance condition is satisfied, 
the hole oscillates between upper and lower levels with the Rabi frequency. Now its 
residence time on the two-level system depends on the combination of free flight times 
in h and 1 sub-bands. This will be discussed in more detail in § 5 .  

3.2. Generalisation of the model 

To describe the evolution of the simple two-level system, which is in contact with the 
reservoir (or other two-level systems) and at the same time is driven by an external force, 
the so-called Bloch equations are used (Blum 1981). However, these equations cannot 
be directly applied to our model in figure 2. The reason is that in the standard Bloch 
equations there is no exchange of particles between the considered two-level system and 
the reservoir, and as a result the particle stays on the two-level system forever. 

In our model the particle number on the particular two-level system should be 
conserved only during the particle free flight time. To describe this situation we shall 
employ an open two-level model proposed by Breiland et a1 (1976), where particles can 
come into and leave the two-level system (figure 3 ) .  The open two-level system is 
described by the following four differential equations written in rotating-wave approxi- 
mation (Breiland et a1 1976) 

Pr dp, = -Api - - 
d t  r2 
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F, c o s  

t ; l  t ;I 

Figure 3. Pictorial description of an open 
two-level system. Fh and F, are particle 
feeding rates and r;' and t;l are particle 
decay rates connected with heavy- and 
light-mass valence sub-bands. 

d r  rl 
d z  T I  

1- 1 - &pi - - + fl  

In (5) rl and rh are probabilities to occupy the states 11) and 1 h) of the two-level system, 
respectively, and pr and pi are components that contain coherence information. These 
terms are connected to density matrix elements through relations 

t h  = cot,, and zl = utl  are dimensionless free flight times in decoupled h and 1 sub-bands, 
P l l  = r1 P 2 2  = r h  ~ 2 1  = (Pr - iPi)/2 ~ 1 2  = (Pr + iPi)/2. 

is a dimensionless dephasing (coherence) time, and zz = cot; is a dimensionless pure 
dephasing time connected with extra mechanisms that spoil the coherence of individual 
dipoles in the micro-ensemble. Equation (6) is an exact analogue of the transverse 
relaxation time in the standard Bloch equations. = F l / o  and fh = Fh/w are dimen- 
sionless feeding rates, which do not depend explicitly on the laser intensity. The feeding 
is assumed to occur to the pure 11) and 1 h) states, not to their superposition. In the 
absence of the driving field, Q = 0, (5a) and (5b) are decoupled from the rest of the 
equations, and their solution describes the exponential decay of the permanent dipole. 
In (5) the term responsible for relaxation from 11) to I h) states, which is so important in 
the standard Bloch system, is omitted, because in semiconductors direct transitions 
between valence sub-bands, wherein the hole due to collision with the phonon performs 
an inter-valence transition without momentum change, is forbidden by momentum 
conservation. 

The system ( 5 ) ,  in general, does not conserve the probability to find the particle on 
the considered two-level system during hole free flight time. The MC method, although 
governed by probabilistic laws, is classical in nature. This means that between the 
collisions the joint probability to find the particle in 1 h) and 11) states should be inde- 
pendent of time and satisfyr,(t) + rl(t) = 1, and that after the collision the whole particle, 
not part of it, should be transferred to the other two-level system, otherwise there will 
be particle probability leakage. The particle conservation equation, rh(t) + r,(t) = 1, 
along with (5c) and ( 5 d )  yields the balance equation between the feeding and decay: 

To advance further, something about feeding terms should be assumed. In the following 
fi + f h  = r l / t i  + r h / t h  = z;' + ( z ~ '  - z;l)r1. 
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the feeding term of the light-hole-mass sub-band will be equated to the equilibrium value 
fi = r fo) / z l .  Such approximation is expected to be good for large laser energies 
when in the region of excitation ria) = 0. With this in mind, the system ( 5 )  reduces to 

Pi 
- Apr  - - - Q(2r1 - 1) d p  i 

d t  t 2  

-- 

which bears a very close resemblance to the standard Bloch equations (Allen and Eberly 
1975, Blum 1981). However, there is a fundamental difference: in the system (7) the 
change of population on 1 h) and 11) levels occurs through other two-level systems, while 
in the standard Bloch equations the population relaxes within a single two-level system, 
although in both cases rh(t) + rl(t)  = 1. 

Two types of solutions of (7), stationary (s) and transient (t), were incorporated into 
the MC program. Of all possible solutions they, in some sense, are ‘extreme’, and in the 
following will be referred to as s-case and t-case, respectively. 

The s-case assumes that between collisions the two-level evolution can be approxi- 
mated by stationary solutions of (7). Equating all derivatives to zero, the following 
expressions for the imaginary part of the component which contains coherence infor- 
mation and ll)-state population are found: 

Q t 2 ( 1  - 2 r f 0 ) )  
pis  = 1 + Q 2 t 2 z l  + A’z:) 

In the limit of very intense fields, when Q + CO, (9) reduces to ris = 4, which means that 
in this limit the population difference rhs - rls is zero. 

The t-case assumes that after the scattering the hole evolution can be described by a 
transient solution of (7) with the initial conditions p i ( t  = 0) = 0, p I ( t  = 0) = 0 and 
r l ( t  = 0) = ria) = 0, if at z = 0 the hole was scattered into the h sub-band, or rl(z = 0) = 
1 - rlO) = 1, if at t = 0 it was scattered into the 1 sub-band. The transient solution of (7) 
under various initial conditions has been discussed by Torrey (1949). In the particular 
case when t2, tI + andpi(0) = pr(0) = rl(0) = 0 one can easily find that 

-Q 
pi  = (Q2 + A2)1/2 sin[z(Q2 + A2)]’/’ 

Q 2  sin2[$t(Q2 + A2)lI2] 
r ,  = Q2 + A2 (11a) 

If the hole at z = 0 has been scattered into the 1 sub-band, r l (0)  = 1, pi(0) = p,(O) = 0, 
equation ( l l a )  should be replaced by 

rj’ = 1 - ri .  (1lb) 
The probability (lla) to find the hole at the moment z in the 1 sub-band, coincides with 
the expression (1) for tunnelling probability. Of course, in (1) and ( l l a )  the concrete 
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expression for the normalised Rabi frequency Q can be found only from the Schrodinger 
equation for degenerate valence bands (Dargys 1987). 

4. Absorption cross section 

Below, the relations between pI and absorption cross section due to hole transitions 
between 1 and h sub-bands are discussed. More general considerations can be found in 
Allen and Eberly (1975). 

First, it will be assumed that the electric field amplitude is a slowly varying function 
of coordinate z :  d F o / d z  2nFo/A,. This means that over the laser wavelength A, in the 
semiconductor the change of Fo is small. Secondly, the amplitude Fo is assumed to be 
time-independent, because in the ensemble of two-level systems having different ho ,  
we do not expect radiation trapping effects, such as the breakdown of radiation pulse 
inside the crystal into 2n  pulses (McCall and Hahn 1969). Then, the wave equation for 
linearly polarised light and two-level equations (7) yield the following relation between 
light intensity I andp,:  

where N is hole concentration and a = Qo is Rabi frequency related to the average 
dipole moment d through the relation fi = dFo/h. Brackets (.  . .) mean an average over 
the two-level ensemble, which in the case of the MC method is done automatically during 
simulation. Equation (12a) can be rewritten the form of a non-linear Bouguer-Lambert- 
Beer law (Allen and Eberly 1975) 

d I/d z = N( a)Z (Qb) 

where (a) is the total absorption cross section, which now depends on the scattering rate 
with phonons and on the light intensity 

F ~ E ~ E  c I=-- 
2 n' 

In (14), c is the light velocity, is the permittivity of the vacuum, E is the relative 
dielectric constant of the semiconductor and n = VE is the index of refraction. It should 
be noted that in (14) the amplitude of the electric field Fo is measured inside the 
semiconductor, and I corresponds to the total intensity, including lattice polarisation. 
In a special case, when the semiconductor surface is covered with an anti-reflection 
coating, I equals the light intensity in vacuum and Fo equals the electric field amplitude 
inside the semiconductor at the vacuum-semiconductor interface. 

It is convenient to divide the total cross section (13) into two parts, the cross section 
associated with pure absorption (a),  and that associated with induced emission (a},: 

(4 = (4, - ( d e .  (15) 
In the s-case, (a}, and (a}e include all simulation events (and correspondingp, values), 
wherein the scattered hole is transferred to h sub-band and 1 sub-band, respectively. In 
the t-case, (a), and ( o } ~  correspond to those events where hole inter-sub-band transitions 
h -+ 1 and 1 + h take place. 
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Equation (13) can be used directly in the MC program if pI is equal to its stationary 
value (8). In the t-case, when (10) and (11) are used, pI has been replaced by a value 
averaged over the free flight time, fFF = z F F / u  

[ri (t FF if tunnelling begins 

(16) 
from h sub-band 
if tunnelling begins 

p i ( t ) d t =  -- pi = - 

I from 1 sub-band. 
In (16) z = 0 corresponds to the moment just after the scattering event. Then, from (13), 
(14) and (16) it follows that 

](a),  = -(hurl (tFF)/tFF) (17a) 
](a),  = (h@[l  - r l ( tFF)] / tFF) .  (17b) 

These expressions can be interpreted as an average energy absorbed and emitted by a 
hole over its free flight time, or equivalently as the power absorbed and emitted by 
a single hole, 

5. Flight duration 

An intense laser field mixes valence sub-bands, especially in the resonance region. Since 
decoupled sub-band free flight times th(k0) and tl(k,) are not equal, frequently t l(ko) G 
th(k0), the hole free flight time in the mixed bands will depend on laser intensity. 

5.1. The s-case 

If the probabilities Y, and rh to find the hole in 1 and h sub-bands are time-independent, 
the combined probability that a hole in the state ko suffers a collision during the time 
interval d t  will be rldt/tl + rhdt/th. Then, reasoning exactly along the same lines as in a 
single-sub-band case (Jacoboni and Reggiani 1983) yields the following formula for the 
average free flight time tFF in laser-coupled sub-bands: 

The free flight duration was generated with the aid of the formula t, = -tFF In r ,  where 
r is a random number between 0 and 1. 

5.2. The t-case 

The transient case is more complicated. Here it is useful to remind ourselves that in a 
single-band case the probability to find the flight duration t,, if an average free flight time 
is tFF, is given by P F F  = t i ;  exp(-tr/tFF). This can be interpreted as a probability of 
disintegration of a one-level particle, whose average lifetime on the level is tFF. If one 
has a two-level particle (system) with disintegration times th and tl on the respective 
levels, then due to wavefunction mixing the resulting lifetime of the two-level particle 
immersed in an alternating electric field is the average of t h  and ti ,  and acquires an 
additional beat factor. The lifetime can be found from the following pair of differential 
equations (Rautian et a1 1979): 
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Figure 4. The probability distribution that the hole has not suffered a collision with phonons 
during its free flight t, = or, (o is cyclic frequency of the IR laser), when the laser is switched 
off (curves l A ,  2A) and when the laser is switched on (curves l B ,  2B). For curves 1A and 
1B the hole at the moment r = 0 was in h sub-band, and for curves 2A and 2B it was in 1 sub- 
band. th = 1500, t, = 100, Q = 0.0149, A = 0.007. 

Then, the probability that at the moment z, = ut, the particle has not disintegrated 
(or in terminology of holes, the probability that in a mixed state the hole has not 
experienced the collision) is given by 

P F F  = aha: + ala;. . (20) 
The initial conditions for 'wavefunctions' ah and al are the following. If at t = 0 after the 
last collision the hole is in the h sub-band, then ah = 1, ai = 0, and if the hole is in the 1 
sub-band, then ah = 0, al = 1. 

Some characteristic solutions of (19) are summarised below. For zero electric field 
(Q = 0) the equations are decoupled, and their solutions are P F F  = exp( - tr/tI) or P F F  = 
exp( - t r / t h ) .  They describe the probability to find the free flight time t, of the hole in h 
and 1 sub-bands, respectively (curves 1A and 2A in figure 4). If t h  = zI,  then P F F  is 
independent of electric field and detuning A ,  and equals PFF = exp( - tr/tl). In the case 
of infinite lifetimes (th, tl-, CO) the probability P F F  = 1, and ll)-state population ala," 
changes according to (1) and (1la). Since the general solution of (19) is a rather 
complicated expression (it can be found in Rautian et a1 (1979)) here only some typical 
curves will be presented. Figure 4 illustrates the unnormalised probability density for a 
hole flight duration in p-Ge at 77 K and under COz laser irradiation (Fo = 10 kV cm-'). 
As seen, in the presence of IR irradiation the probability PFF oscillates with frequency 
oQ/2 due to hole tunnelling between sub-bands and satisfies exp(-t/t,) < 

In the MC program the flight duration was generated with the help of formulae t, = 
-lFF In rand (18) in the s-case, or with the Neumann rejection technique (Jacoboni and 
Reggiani 1983) in the t-case. In the latter case a pair of random numbers was cast along 
the ordinate and abscissa axis and only those points which fell below the curves PFF(z,) 
of the type in figure 4 were accepted. 

In constructing various histograms one needs to know the residence time, i.e. time 
the hole has stayed in the particular level during its free flight. The residence time in the 
11) level was calculated with the formula 

PFF(T) < exp(-t/th)* 

Since r,(t) + rh(t)  = 1, the residence time in 1 h) level is 
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For the s-case rl is time-independent. Then, tFI = r]tFF and tFh = YhtFF. These expressions 
have very clear physical meaning. 

For the t-case, after insertion of ( l l a )  into (21), one finds 

6. Monte Carlo averages 

The average of physical quantity q in h and 1 sub-bands is expressed through the 
distribution functions fh(k) and fi(k): 

where f(k) =fh(k) +f i (k ) .  The role of the distribution function, which describes the 
probability to detect the particle in a small volume element in k-space, is played by the 
time the particle has visited the considered volume element during MC simulation. With 
this in mind, for example, the average MC absorption and emission cross sections can be 
written as 

= Z: x F l o e / ~  col1 ZFF (26) 
col1 

where summation is over all possible collisions (equivalently, over all two-level systems 
the hole has visited), and o,, oe are elementary absorption and emission cross sections 
o, .~  = (hw/21)&,, (cf. (13) and (15)). 

Similarly, the average hole energy in the nth cell of the h sub-band is 

colln col1 

where col1 n indicates that in the summation only those collisions which have occurred 
in the nth cell of ( k z ,  k,)-space are included. To find the average energy in the h sub- 
band one has to sum over all cells 

7. Block diagram of the Monte Carlo program 

Figure 5 summarises the main steps of the MC procedure for calculation of inter-valence 
absorption. The following comments are appropriate. 

(1) After the data input, the initial values (sub-band index b = h, 1, wavevector ko = 
(kzo,  k l o ) )  are assigned to the hole. 
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Data input. 
Assign b a n d  k o  
values 

Find decoupled 

Find mixed band 
pa ramete rs  r , ,  . 'FF, 'Fh, 'F, 

7? 6'= i 

Find p a r t i a l  cross 
sections u , ( k o ) ,  u , ( k o ) .  
F i l l  i n  histograms 

I C I 
2 

With tunnel prob.  r , ,  
t ransfer  the hole t o  
new sub-band and record 
whether abs. or  emiss. 
has occurred 

Select specif ic 

Figure 5. Flowchart of the Monte Carlo 
program. 

(2) The decoupled sub-band hole scattering probabilities P f ( k o )  per unit time are 
calculated. Inter-sub-band (ij = hl or ij = Ih) and intra-sub-band (zj = hh or ij = 11) 
scattering with acoustic and optic ( k  = a or k = 0 )  phonon absorption and emission (I = 
a or 1 = e) are taken into account-all in all 16 scattering mechanisms (for details see 
Appendix). 

With known P;'(k,) the free flight times in decoupled sub-bands are determined: 

th (ko)  = [P;; + P;; + P;? + P;p + PE; + P;i + Pgr + P;T]-l 
t l ( k o )  = [ P y  + P p  + Pfl + Pf,  + Pia + Pie + Ppha + Pp$]-l. 

(29) 
(30) 

(3) Using th(kO) and t l(k,) ,  the parameters characteristic of sub-bands coupled by a 

(i) coupled-sub-band hole free flight time t F F ( k 0 ) ;  

laser field are calculated: 
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Table 1. Constants of p-Ge used in MC program 
~~ ~ 

Quantity Symbol Value Unit 

Sound velocity 
Density 
Optic deformation potential 
Optic phonon energy 
Heavy mass 
Light mass 
Acoustic phonon scattering ratea 

U 5.4 x 105 
P 5.32 
D,K 9 x loR 

37.4 
mh 0.34 
m, 0.05 
acb - 

cm s-I 
g cm-' 
eV cm-' 
meV 

S - '  

a Values of the constants a and b for phonon absorption and emission by light and heavy 
holes of energy E are presented in Appendix 2 of paper 11. 

(ii) h and 1 sub-band populations at wavevector ko and at moment t F F ;  

(iii) residence times in coupled h and 1 sub-bands tFh(kO) and tFl(kO) for construction 
of distribution functions and averages. 

(4) Partial absorption a,(ko) and emission ae(ko) cross sections are found. Using 
f F h ( k 0 )  and tFl(k0) as weights, the values of various physical parameters which correspond 
to wavevector ko are summed up into appropriate cells for construction of histograms 
and various averages. 

( 5 )  Using r,(k,) as the probability for a hole to suffer tunnelling transitions h + 1 (if 
initially the hole was in h sub-band) or 1 + h (if initially the hole was in 1 sub-band), the 
hole is transferred into appropriate sub-band b ' .  If tunnelling transition h + 1 (1 + h) 
has occurred the absorption (emission) of radiation quanta hu is recorded. If tunnelling 
transition has not occurred, it is assumed that no interaction of radiation with the hole 
has taken place. 

(6) Specific scattering mechanism and the sub-band b" into which the hole is to be 
scattered by the phonon are selected. For this purpose the probabilities Pff'(ko) found 
in step 2 as well as information to which sub-band the hole has tunnelled (for example, 
into b = I ,  see step 5)  are used. 

( 7 )  New hole wavevector ki is calculated. 
(8) The initial hole wavevector and sub-band index are renamed (k ;  + k , ,  b" + b ) ,  

and the MC procedure is continued beginning from step 2. If the total number of scattering 
events with phonons is sufficient the MC simulation is interrupted and results, histograms, 
etc., are printed. 

8. Low-intensity absorption 

All MC calculations in this (and the next) paper were done with r fo)  = 0. The constants 
used in the MC program are presented in table 1. 

In figure 6 the inter-valence absorption and induced emission cross sections defined 
by (25) and (26) are plotted as a function of laser energy fiw at weak laser intensities. 
The experimentally accessible cross section is the difference (a) = (a), - (&. In the 
program inter-valence tunnelling was taken into account if detuning appeared to be in 
the range -0.25 < A < 0.25. For larger and smaller A values the simulation proceeded 
as if radiation was switched off and sub-bands decoupled altogether. Everywhere in 
obtaining a single point about lo5  collisions with phonons have been simulated. The full 
curves in figure 6 are analytical expressions 
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10- l1  

2 d 2  a 1 h 2 ( h  w ) 1’2 

which can be deduced with the equilibrium distribution functions in h and 1 sub-bands, 
inter-valence band transition matrix elements calculated within first-order perturbation 
theory, and energy-conserving &function. In (31) and (32) a is fine structure 

a = e 2 / ( 4 n ~ , h c )  = 137. 

Some remarks are to be pointed out in connection with figure 6. First of all, in 
calculating cross sections by the MC method here (and in all figures which will be 
presented in paper 11) no adjustable parameters were used. Secondly, the cross sections 
calculated by the MC method are slightly smaller, especially in figure 6(b). This is 
connected with the finite electric field amplitude used in the MC simulation, and as a 
result the slight perturbation of the distribution function in the region of the resonance. 
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Low electric field intensities lead to very narrow absorption linewidths (compare (8)- 
( l la))  and many collisions are needed to get reliable results, especially at small hw 
values. Thirdly, in the cross sections, as already mentioned, the distribution function 
plays the role of flight duration in the respective sub-bands. The cross sections as seen 
from (25) and (26) explicitly depend on the scattering rates Pi'. As known, low-intensity 
cross sections, in fact, are independent of scattering rates. That this is indeed the case 
has been checked by varying the acoustic phonon scattering rate: at low fields the MC 
cross sections (25) and (26) were found to be independent of P f .  This is so, because at 
low fields the MC procedure itself automatically ensures the detailed balance between 
in-scattering and out-scattering processes. For the same reason the low-field expressions 
(31) and (32) do not contain parameters which govern the scattering, for example, 
deformation potential constants. However, at high laser intensities, when detailed 
balance is not necessarily satisfied, the cross section does depend on phonon scattering 
rate, as will be seen in paper 11. Finally, the reliability of the MC procedure has been 
checked with the equilibrium analytical solution with no adjustable parameters. At low 
field amplitudes both the transient case and the stationary case formulae yield good 
agreement with the analytical calculations and at this stage no preference can be given 
to either. 

Appendix. Final state after scattering 

Let ki and kf be initial hole wavevector before scattering and final wavevector after 
scattering, respectively, and 0 the angle between them. The polar 6, and azimuthal q f  
angles of kf were generated with two random numbers rl and r2 distributed evenly 
between 0 and 1 

cos 6, = 1 - 2r, (All 

q f  = 2nr2.  (A21 
The angles were acceptedif intra-sub-band, Gii = (1 + 3 cos2 0 )/4, andinter-sub-band, 
G, = 3(1 - cos2 0) /4 ,  overlap factors satisfied Gii, G, > r3,  where r3 is also a random 
number; otherwise new angles 6, and qf were generated with (Al) and (A2). The 
modulus of kf was found from momentum and energy conservation 

kf = ki ? q (A31 
h2k: h 2 k f  
2mf 2mi 

- -+ nqu 

in the case of acoustic phonon scattering, and from energy conservation only 

h2k: h2k? 
2mf 2mi 

f Eop - 

in the case of optical phonon scattering. Here mf and mi are final and initial hole masses 
(mf, mi = mh, ml) and U is the sound velocity. The upper (lower) sign corresponds to 
absorption (emission) of a phonon with energy hqu or cop. Finally q is the acoustic 
phonon wavevector. The system (A3), (A4) was solved by a special fast iterative 
procedure. If selected random numbers r l ,  r2 ,  r3 did not allow (A3) and (A4) to be 
satisfied simultaneously, a new scattering mechanism was determined stochastically and 
a new final-state vector calculated. 
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